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1.INTRODUCTION

The goal in many activities or contests is not necessarily to do

well in awl absolute sense, but merely to out perform an adversary.

The objective of this paper is to provide a model for such a contest,

establish the optimality of certain procedures, and provide suitable

approximations to these optimal procedures. But before yielding to

the Mathematics of the model, we wish to fix ideas with an anecdote.

Two statisticians, Bob and Mike, engage in a contest to guess

weights of people at a party. They agree that Bob will always guess

first. Mike will then guess and finally the person in question will

say who is closer. For example on person number one Bob guessed 137

pounds. Mike then guesses 137.01 pounds and the guest declared Mike

the victor. The contest continued in a similar vein and to Bob's5

dismay he won barely a quarter of the time.

intuitively it is clear that the second guesser has an advantage,

and one of the relsults of Section 2 shows that this advantage is typically

as large as the 75 percent obtained by Mike in the anecdote.

To continue the story, Bob was so stunned by defeat and eager for

revenge, that he elicited the assistance of a professional weight guesser.

Mike agreed that since the new team was so powerful it should be willing

to make all of its guesses about the weights of the guests before Mike

had to state any of his guesses. The team agreed to the proposed rule

change, and Mike then proceeded to win even more convincingly than before.
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The strategy used by Mike in the second case is naturally more

sophisticated than the one he used when he was matched against an

equal. This second strategy derives from an hierarchical linear

model like that studied in Lindley and Smith [8]. It is also closely

connected with the James-Stein estimator and was originally motivated

by the "Batting Average" example of Efron and Morris [3].

Our program begins by establishing in Section 2 a formal theory

of guessing contests. We also give a simple but very general

optimality result which forms the basis for the rest of the paper.

The third section determines the exact optimal strategy for second

guessing under a certain linear model. Practical approximations to this

optimal strategy are worked out in Section 4 . The final section gives

a critical discussion of the various sources of difficulties inherent

in applying this theory of guessing contests. While the main point of

this paper is to provide a tractible theory of guessing contests, we

feel that the largest single point established is the approximate

optimality of the simple rule given by Equation (4.1).



2%, NOTELLING' S STRATEGY

The structure of our guessing mo~del can be described by

a system of fou~r p vectors.

Target Values: (e I,%,).. JO 0

First Guess: (X1IX 2 ... JXp) = X

Second Guesser's Hunch: (Y1,Y2, ...yp) = Y

Second Guess: (G1,G 2 ...,G p) = G

The ei represent the real values to be guessed. The Xare

guesses made by the person who goes first and all of these are assumed

to be available to the second guesser before he acts. TheY

represent the second guesser's best estimate of the ei. Finally,

the Gi are the guesses to be announced by the second guesser.

Our principal task is to determine how G should be based on X

and Y.

The objective of each player is to cone closer to 0 than his

opponent, so we begin by setting

Acce3slaIn For
(2.1) V(G,e) D TA~Ge ~Z 1B;&

where

(1 IG3N-0I1 < IX~ - 0~ DItJbII...
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The strategic objective of the second guesser is therefore to maximize

E V(G,O), i.e., the second guesser wishes to maximize the expected

number of times his guesses come closer to the true values.

The only probabalistic assumptions to be made now are that -, X, Y

have a joint distribution which is continuous. This assumption is made

for convenience and avoids the ad hoc conventions required for dealing

with ties.

Now let vi(X,Y) denote the median of the conditional distribution

of ei given X and Y. A key role in our guessing theory is played

by the following strategy:

= X :iI: if Xi < vi(xIY)
Gi =

Xi-C otherwise

These strategies will subsequently be called Hotelltng Strategies

since they were essentially put forward in Hotelling [6, p. 511. There

are broad differences between the present model and Hotelling' s problem

in location economics, but the relationship seems close enough to

justify (or even require) the name. The main fact in this section is

the following simple result:

Theorem 2.1. The Hotelling Strategies are c-optiml, that is,

lim E V(G C,) = sup E V(G,t,)
o G

Proof. Since any guess Gi must be on one side or the other of X

we have LI4



PX Y (I Gi-O: < I Xi-Oi) < maxPXPY (01 < xi), PX' (o >_ X,)

The basic observation about Gi is that

(IE

4- 0

Taking expectations in the two preceeding relations and summing over

I < i < p, the theorem is proved.

A compelling impediment to the use of Hotelling strategies is that

they require the knowledge of the Joint distribution of 0, X, Y, or at

least the knowledge of vi (X,Y). The key task of the remainder of this

paper is to isolate some feasible circumstances where this impediment

can be overcome.

To begin, consider the strategies

rxi+C if i<Yi

if 
>

Xi-e if Xi > Y,

where the second guesser places his guess just a bit to the side of the

first guess in the direction of his own "hunch" Yi"

In some cases one can show that these Hunch Guided Guesses are

in fact Hotelling strategies. Certainly, if the vectors (ei,YiXi) ,
1< i < p are independent and PilYi  N(Yi,2), XiIEi,Yi XOi - N(XI6 2

then vi (X,Y) is on the same side of Xi as Yi" This imediately

implies that the Hotelling and Hunch Guided strategies will then coincide

Without distributional assumptions on v one can no longer speak

of the optimality of a guessing strategy, but the fbllowing result points

out a case where the second guesser can still realize a substantial advantage.



Three Quarters TheoremI
. If X X-6 and Y Y-O are identically

distributed, independent and symmetric about zero, then the Hunch Guided

Guess has probability 3/4 of winning as c - 0.

Proof. As E 4 0 the probability that the Hunch guided guesser loses

is P(7 <2 < 0) + P(O < X < Y). By symmetry and exchangeability this

probability also equals

2P(O < < R) = P(O < R and 0 < Y) = 1/4

In a practical application of the three-quarter theorem the assumption

of identical distributions might seem to pose some difficulties. Reassur-

ingly, the result is quite robust. For example, assuming unbiased jointly

normal guesses the second guesser still wins with probability greater than

.68 when Var Y/Var X = 2.5 and wins with probability greater than .59

when Var 7/Var X = 10. (These probabilities are easily confirmed by

tables of the bivariate normal (e.g. Owen [10]).) The more detailed

assessment of robustness in guessing competitions will be dealt with in

a subsequent report, but one should note an obvious aspect of non-robust-

ness under gross changes in the model of Theorem 2.1 is that the probability

of the second guesser winning will tend to 1/2 or 1 according as

Var Y/Var X tends to - or 0.

1.

A result equivalent to the above was told to the first author in 1"7'5

by R. Chacon and was known much earlier to R. Chacon and S. Kochen. The

result was also known earlier to T. Cover in the form: Between two "equally

matched" basketball Leams the odds are 3 to I in favor of the team leading

at the half.
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3. GAUSSIAN GUESSING

Since Hotelling strategies have been shown to be optimal, one would

naturally like to provide a class of models in which the strategies can

be determined explicitly. The main result of this section is to give

such explicit strategies under a multivariate normal model studied by

Lindley [8] and Lindley and Smith [9].

We write UIV for the conditional distribution of U given V,

1 for the row p-vector (i,i,...,i), and I for the p x pp p

identity matrix.

Our Gaussian Model assumptions are the following:

eh. - N(PI , Cr2)

(3.1)

~N ( o , a-.)

and

XYO,p- N(O(I pI )r)

where

The physical motives behind this model are that the true weights

of the persons we see are viewed as independent realizations of a

single fixed random process tiich was itself onc drawn from a popula-

tion of random processes. For example, the parameter p can be viewed

as a geographically fixed quantity determined at a earlier time by

(random) immigrations. The assumption of normality one made partially

out of traditional convenience, but also because they seem JustifiablP

in the weight guessing example. The structural model together with
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the normality lead uniquely to the Gaussian Model specified in (5.1.)

The promised explicit dEtermination of the Hotelling strategy is now

possible.

Theorem 3.1. Under the preceding Gaussian Model the Hotelling strategy

is

X +E if Xi < Y@0+(I-)[ -13 )V]

(3.2) G*+ (1-a )[6 (Xi -1) + (l -4)(Yi-)

Xi-6 otherwise

-2(-2 + -2 + y2 - 2 2 2wher e Y a- O + Cy +e +_ ) '= + P o

.2 -2 -2 -2 2  -
a'( + 07) and +-2 2

The proof of the preceeding depends on a multivariate calculation which

we have deferred to Appendix I in order to take up directly the problem

of interpreting the result.

The basic part is the mixture of means, 0  (I-)[ + (-6) ] ,

which is perturbed on trial i by the "mixture" of residuals

cL.O+ (l-a)[P(Xi-X) + (1-8)(Yi-7). The coefficient - 0(- 2 +y2) -

appearing in these mixtures is near 0, 1/2, or 1 accordingly as
2 -22X-2 is near c, l, or 0. This ratio is one natural measure of

the relative abilities of the two guessers and this interpretation is

2 -2reinforced by considering the extreme cases. When u y the first
2~ -2

guess is essentially ignored and when a 2 - it is the hunch which

gets ignored. This last case is of particular interest since it

corresponds to trying to out guess a far better informed adversary.
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4. STEIN GUIDED GUESSING

The strategies just derived have the drawback that they are functions

2 2 2 2of 0' 4' CeY a X and ( y . Although the magnitude of l0 and of the

relevant variance ratios may be sufficiently understood for some appli-

cations, the exact values of these quantities can not generally be

assumed to be known. The next objective is thus to derive reasonable

estimates to the unknown mean and variances. One benefit of this

analysis is a clearer understanding of the empirical fact [31 that

the Stein estimator performs well with respect to the reward

function V.

A Bayesian approach to the above estimations can be made along the

lines suggested in Lindley and Smith [91 but such a procedure can prove

quite complex (c.f. Discussion [9] by V. D. BLrnett). The estimators

considered here are based on an empirical Bayes procedure which seems

both simple and sensible.

As before we write Z = (X,Y) and begin by transforming Z into a

T, Tcanonical form. Next we recall that 1T1 pP p P where P denotes
pp

the p x p Helmert orthogonal matrix (c.f. [2], p. 102) and A is

the p x p matrix with 1 in the (1,1) position and all other entries

zero. We define (U,V) by

(u,v) - 2/2 (X,Y) T

9



A straightforward calculation shows (U,V) N( .*, Z*) where

S(2p) (eo) ,

e =(i,o,... ,o),

2 -12 29 2 1 2 2

21E + 2o-0 I+ 2pc- '
2_p + p O 0 0

and I

2 1 P2 2 1 2 20 " + f ( 0x +  a Y ) ' a- ( f ( r x " _ 0 ) "

From the canonical form above one notes that c2 cannot be meaningfully

estimated since there is only one degree of freedom available for its

estimation.

We now turn to the analysis of important special cases which

correspond to qualitatively different contexts.

Case A. Known Variances. We only need to estimate 10 and this

is done by maximizing the Type II likelihood (c.f. Good [5]). This

calculation easily follows from equation (A.1) of the appendix, and the

estimator obtained is

A -1 ZT  -1 IT -

0 2 Z 2 ZZ 2p •

This simplifies further to just

1'1
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A +

so the estimated Hotelling strategy becomes

* i xi+E if Xi <a[oX+ (1-43)7 + (la)[OXi + (l )Yi]
Gi =

Xi-C otherwise

where the parameters a and P are as specified in Theorem 3.1.

2 2 2 2 2Case B. a- =y0; O= = and a unknown. The canonical

model simplifies to

(u, V) N- ((2p)1/240 (eO), 2 (~ 0 + 209~ )0 1 0 o

and this time estimators are easily found without carrying out the

likelihood maximization. We take the estimators of V., t = ( +2a2-

2
and 6 , respectively, given by

A 1/2
1.0 = (2p) U

A 2)-1
=P( Ui1 2

ars
A2 -lV.T

In terms of X and Y we then get

1l



]21-2

S-( _ (X +Y.) _ (X Y)
i-i V2 2

and

(2 ) - [-I (x -yI 2

i= Ir

The approximate Hotelling strategy for this case is therefore

( ^ 1 1

X.+E if X. <a- (3X-+)+ ( )1 • (X+Y
* 1 < 2 2' 1 * X+iG i =

X)-E otherwise

where

&= I L. _ii (Xi-Yi)]] _I (Xi+Yi) _ - (X+Y-)i21I0~ / i- i-- (X i Y

A

One should note that ax has a natural interpretation. It is just

the ratio (between the guesser variance) .- (between the trial variance).

The optimal strategy favors using L(47y) when S is close to 1
1 A

and favors (Xi+Yi) when cx is close to 0. Also, the strategy can

A

be improved slightly by replacing U by 1 if it happens that a > 1.

2 2 2 2
Case C. a 0, a = a, - Known; x0 Unknown.

This is a case we feel to be of particular interest. Calculating

as before we find that a Stein estimator determines the approximate

Hotelling strategy, but that it plays a cameo role since the strategy

12



simplifies to just "betting on the Xi side of X." This simple result

gives some theoretical justification to the otherwise somemhat mysterious

empirical fact that X performs even better than the Stein estimator in

terms of "gambler's" loss on the batting average data set (c.f. Plackett's

Comment (3, p. 4161 and an easy computation).

2
The formal analysis begins as in Case B. Since O = O the Y

is uninformative and the analysis must rest on X above. Also since

2
C = 0 the canonical form of the X's marginal model can be simplified

to

The obvious estimate of p 0 is given by

A0 - X

^ 
2 2 1

and if we require that the estimate, T of Tx = (O +oe) to be unbiased,

A ( (x=1 -)2 )1
i=l

becomes the natural choice and the estimated Hotelling strategy is

X i+E if xi <a x + ( A*)xi
Gi =

XI -E otherwise

2 (xin ,x 2
where a = and a a (

1



The direction of the guess on the side of X. is determined by
1

X+ (1-a*)Xi which is precisely the Stein estimator as modified

by Lirdley (c.f. [7] and the discussion following [9]).

Now since the convex combination of X and Xi will always be on

the same side of Xi as X the estimated Hotelling strategy can be

more simply written as just

. X +C if X <X
(4.1) Gi .

Xi-E otherwise

This is an extraordinarily simple procedure in a model which we

feel may be realistic in several sporting and business contexts.

To assess the performance of this Stein-guided strategy guessing

trials were simulated for a variety of special cases. The i were

chosen as ei = 0, 0i = i, and ei = i
3  for each of i = 1,2,...,p

with p = 10 and then with p = 100; thus, in all 3 x 2 = 6 cases

were considered.

As an illustration of the computation consider the case where

i and p = 100. In this case 200 repetitions were made as

follows:

(1) X was generated as N(e,I) with 0 = (1,2,...,iO).

(2) Gi was calculated by (4.1) with c = 1In.

(3) V was then calculated, and the process was repeated 200 times.

(4) The 200 realizations of V/l00 were used to estimate the density

of V/O0, the percentage of times the second player wins using the G*

of (4.1).

14



(5) This density was plotted in Figure 2 (in this case, the

unshaded density in the middle graphi).

From Figure A one learns by looking at the unshaded density in

the top graph that when as many as 10 parameters growing like i

are to be guessed that the modal1 percent of correct guesses made by

the second guesser is about 9)5 percent. The general conclusion to be

drawn from Figure A are (1) the more parameters to be guessed, the

greater the advantage to the second guesser and ()the more spread

out the 01to be guessed, the more the advantage to the second

guesser.

In Figure B, these conclusions are further examined by taking the

01themselves to be random. Here p 2 0 was fixed throughout. First

we took a realization of e '- N(o, 41 20) Then '10() of the X's we

generated with the same fixed underlying P (just as in Figure A).

The density of V/20o was estimated as before, and altogether 25

runs were made. The 25 runs produced remarkably similar estimates of

the density of V/2o0, and the estimates from runs number 1, 17, and

21l were selected as indicative of the variability in the P5 runs.
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REALITIES OF APPLICATION

Almost any discussion of the prececding theory evntua] ly turns to

the problem of football betting, and it seems gener~t.iy worthwhilu '*.

note why the theory is not applicable to that probm. A key reasotn

is thait thE bookie (or person "setting the line") is not trying to

estimate the actual point spread. He is trying to produce -i point

spread which will produce a nearly equal nmber of takers on eah side

of the spread. The bookie is therefore not a "first guesser" in th.

sense of this paper and our theory naturally does not apply.

Consider instead two bookies of equal caliber, one of whom sets

his line on Monday and the other on Tuesday (for the game on 2unday).

If the Tuesday bookie only wished to obtain a more even distribution

of customers on either side of his line than the Monday bookie, he

should be able to do so in almost 3/4 of the games by using the junch

guided guessing of Section 2. In this case, each bookie is a bcna fidt

guesser of that spread s which will evenly plit the pol of betters.

Since there are actually many games each week, the Tuenday bookie

could actually out perform the Monday bookie by using the tein guidt d

strategy of S, ction 4, particularly 14.] ). The ass;mptions of (".I) may

rat be applicable to the ho]P set of games; but Jf one considers only

non-carismatic games outside the bookie's city, then (_.:) s em:;

reasonable. (This is a stratification step to obtain incrased homogneity

of the spreads to be guessed.)

The examples put. forward above axre in the lorg tradition of ged.iuken

exerimente, and the problem of producing a truly telling appication remain.

open. An intriguing aspect. of -, theory of this naturt- is that It is only

necess&ry to ind one good tppI ication.

1 P



Appendix I: Proof of Theorem .1

By Theorem 2.1 the problem depends on the calculation of the posterior

median vi (X,Y) which by the normality assumptions (5.1) coincides with

the posterior mean. The argument given here for completeness is similar

to those of Lindley (71 and Lindley and Smith [I!. It depends on the

well known fact (c.f. [lj, p. 27) that if U and V are jointly normal

then

U1 v N(EU -EV. + vC, ,.v)

where C Yv 13, denotes the covariance
where *VV - WUU

matrix of V and so on.

Setting Z = (X,Y) and applying the above to (5.1) we have

(A. 1) Z ~N(,, (Ip Ip,.:Z

where

2 TZZ d {X'Y }  p o 2 ) Ip p fJ, ITp

where (& denotes the Kronecker matrix product and J 2 is the matrix

with all 1 entries. Further,

EVt!Z) - E ,) - E(Z) • Z ,

where

-1
72 'Z



with

Z ( I) -ee

and

Z 2 2T 1eeO = flp I P P

-iip

We now determine E . First we note that

TZ *

11 P pT A P
pp

ihere P denotes the Helmert orthogonal matrix (c.f. [2], p. 102) and

L is the p x p matrix with 1 in the (1,1) position and al

remaining entries zero.

One then notes that

(1i2 (D p) E ZZ(1 2 4D p)

reduces to just

di 2 2 +2
O'X'y a p 02 + pa' 2 OD

%bich makes it straightforward to show

E-1 T-1 (12q)PT ) 9 (124)P)
ZzZ 2

, )



where

e ax .Y2) Y _1 + 0 -2 ~-i

where y and C are as in Theorem 3.1.

From these results an explicit expression for Z. C is readily

obtained. We first note

Z (xPT, (T) TT 0

and

E(PT, pT)T = (a-2, y2 T .0

Thus

(A.2) Z - = (xpTPypT)[ ,Opyp = 2 y2)A

0 al p -1

where

2 o7 0
o 2o a 0

Now represent X as

X =Xlp*(x-xi )
X T p +(71P)

Then we have

XpT  x(p/2o,. .. ,O) + (OX( 2 ))

21



where

fX.X 2 IX X_2-_ XI+X2+.--. +Xi-(p-i )XP

x(2 )(2)

XA = 2y X(pl/,0, .. ,O)P +c a(o ()P

= oa , i + a x
p 0 p

for XA and YA in (A. 2) yields

2,-2 -2, ,- 2

since U2 (a 2 +aY) 1-Y and ao2( X-h2 ) l-.

From the expression just obtained in (A.3) E(Z)- and hence

E(O)-E(Z)-C are easily found. To get E(Z)- simply substitute Polp

for both X and Y. This gives

E(Z)- = 2[ 'X2 121 ol p

At the same time E(O) = polp, so we have

(A.4) E(O)-E(Z)'C = ypo p

The proof of Theorem 3.1 is now an immediate consequence of (A.3)

and (A.4).

2:1
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OPTIMAL STRATEGIES FOR SECOND GUESSERS/
' A model is given for a class of contests in which the participants

try to guess (or estimate) unknown quantities, and the objective of each

player is to come closer to the unknown quantities than his adversary.

A general optimality result is proved which gives the best guessing

rules for the second guesser. These rules are first calculated exactly

in a certain hierarchical linear model, and then simpler approximate

rules are given.
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